服务热线
0519-81660866
简要描述:
油漆废气处理装置主要应用于油漆、塑料、涂料、橡胶等化工生产排放的有机废气或者有机溶剂的净化处理,通常我们使用活性炭做吸附剂。活性炭吸附设备常用于净化含四氧化碳和氯乙烯等废气,主要适用于喷漆、印刷、油漆生产和涂料生产等行业。
品牌 | 其他品牌 | 加工定制 | 是 |
---|
油漆废气处理装置吸附法主要应用于油漆、塑料、涂料、橡胶等化工生产排放的有机废气或者有机溶剂的净化处理,通常我们使用活性炭做吸附剂。活性炭吸附设备常用于净化含四氧化碳和氯乙烯等废气,主要适用于喷漆、印刷、油漆生产和涂料生产等行业。但是,活性炭的原料成本较高,再生技术并不完善,在某些行业中解吸回收的产品质量较差,销路不广泛。因此活性炭吸附法只是用于某些高浓度的有机废气处理,经活性炭吸附回收的有机物或溶剂可回用于生产,节约原材料。化工行业生产过程中排放的废气中含有大量有机污染物和恶臭物质,可用催化燃烧法或者直接燃烧法处理。需要注意的是,在燃烧过程中形成的中间产物可能比原来的污染物危害更大,所以必须要掌握好燃烧温度、时间,以保证燃烧*。催化燃烧法是借助催化剂,使废气在较低温度(200~500℃)下*燃烧;直接燃烧法一般采用焚烧炉进行处理,但是直接燃烧法消耗染料较多,仅适用于处理热值较高的废气。随着经济快速发展,应用喷漆工艺的化工、房地产、汽车、机械、电子产品、船舶等行业也随之不断壮大。喷涂过程中排放的有机废气对周围环境甚至人类健康带来危害,喷漆废气主要以三苯(苯、甲苯、二甲苯)为主,有些还兼具酯类、醚类、酮类等组分。这些挥发性有机物轻则使人头痛,重则抽搐昏迷,伤害人体免疫系统。为有效解决这些问题,国家及部分省市已颁布一系列法律法规和大气环境保护标准限制和治理废气产生的危害。针对喷涂工艺中产生的有机废气,本文将介绍不同处理技术,分析其优势以及存在问题,并从中寻找规律,找出的处理净化工艺方法。
1喷漆废气的成分及危害
在喷漆涂装过程中高压空气喷射的油漆绝大部分停留在工件上,其他未到达喷涂表面的喷雾微粒与溶解喷漆微粒的水珠悬浮在空气中,以及喷涂过程中产生的挥发性有机化合物形成喷漆废气污染环境。由于不同油漆涂料所用溶剂不同,因而在喷涂过程中产生的废气组分也不同。以汽车喷涂为例检测出15种VOCs,包括苯系物(甲苯、二甲苯等)、酯类(乙酸乙酯、乙酸丁酯等)、酮类(甲基异丁基酮)和醚类(乙二醇丁醚)等。北京、上海、广东、江苏等地针对涂装行业VOCs排放制定了相应标准,见表1。
不同油漆以及采用不同工艺生产的涂料其VOCs成分及比例也大不相同。曾培源等在调查广州市某规模较大汽车涂料企业中发现VOCs主要成分为乙酸仲丁酯、甲基异丁酮、甲苯、乙酸丁酯、乙苯和二甲苯,且二甲苯和乙酸丁酯所占比例接近50%。谭强等在调查佛山某工业园有关涂料的众多企业时检测出苯、甲苯、二甲苯和正乙烷为VOCs主要成分。余宇帆[5]研究珠三角地区涂装排放VOCs特征谱后得出其主要VOCs依次为乙酸乙酯、乙苯、甲苯、二甲苯、苯乙烯和乙酸丁酯等。潘洁晨等对室内装修的乳胶漆和硝基木器漆的挥发状况进行模拟,得出乳胶漆产生的主要VOC为1,2-丙二醇,硝基漆含有的主要VOC为苯系物。因此喷漆废气处理要根据产生的VOCs种类不同选择适宜的净化技术。
油漆废气处理装置喷漆废气对人类危害不容忽视,散发在空气中的漆雾经呼吸道吸入后会引发急慢性中毒,损害人体的神经和造血系统。吸入高浓度的苯、甲苯、乙酸乙酯等废气短时间内会抑制人的记忆力、注意力和感觉运动速度,长时间接触会对肝脏造成毒性反应,甚至对中枢神经造成破坏。表2为全国职业卫生标准委员会提出的《工作场所有害因素职业接触限值》(GBZ2—2002),规定了三苯等有机化合物容许接触浓度。
封蔚莹等对连续从事装修作业油漆工人健康调查得出,作业环境中苯及其苯系物明显超标,油漆污染对工人的免疫功能和造血功能都有一定影响。在实际作业过程中,工人接触的是多种化学有害物质的混合物,这些污染物的独立、协同、拮抗、加和的联合毒性作用是难以想象。因此,含有多种成分挥发性有机化合物的喷漆废气净化处理就显得尤为重要。
2喷漆废气预处理技术
喷涂废气不仅含有挥发性有机物,还包含喷涂过程中悬浮在空气中的漆雾,漆雾会影响后续有机废气处理,所以喷漆废气净化前需要去除其中的漆雾,以便下一步对其中挥发性有机物净化治理。
2.1湿式净化法
湿式净化法是依据相似相溶原理,通过溶剂吸收(或者化学吸收)喷漆废气中的漆雾,常用的湿式净化法有水帘式、无泵水幕式、文丘里式、水旋式等处理净化法。
2.1.1水帘式净化法
水帘式净化法是经过水泵循环喷淋产生流动的帘状水层,水幕捕集飞散的漆雾,工艺流程如图1所示。一般大型水帘式喷漆室将水帘斜坡放置在室底,通过循环水泵调节水帘形状,当喷漆气流通过水帘时,漆雾被附着留下。工业上常见的水帘式喷漆室设备主要由喷漆室室体、漆雾净化器、水气分离器、水过滤器、水循环管、照明装置、风机、水泵及电器控制系统等部分组成。
水帘式净化法可有效降低喷漆废气中漆雾的排放量,操作方便,结构简单。但水幕净化产生含有漆雾的废水,需废水处理防止二次污染;对于大型水帘喷漆室,大面积水帘会增大室内空气湿度,影响工人工作环境和涂层质量。
2.1.2无泵水幕式净化法
无泵水幕式净化法是利用空气诱导提水形成水幕,当喷漆废气与水幕碰撞后,水幕截留雾状微粒及其携带油漆的水珠;然后废气穿过水帘进入气水搅拌通道,在通道中与水混合;进入集气箱后由于气速降低发生气液分离,净化后的气体排放到大气中,被分离的水在集气箱中汇集流向溢水槽,再通过泛水板形成水幕,循环重复净化喷漆废气,工艺流程如图2所示。相对于水帘式净化法,无泵式净化法去除了水泵设备,优化了净化流程,节约成本和占地面积,同时克服了漆雾黏附管道内壁导致水泵阻塞的现象。
2.1.3文丘里水幕式净化法
完整的文丘里水幕式喷漆净化室由室体、送风系统、排风系统、供气系统、供水系统、水密封系统、供电系统等组成。处理流程主要是运用文丘里效应的气相负压,气流在文丘里喉口部位急剧加速,通过风口的均匀水流被充分雾化,利用雾化的水汽捕集废气中漆雾;在离心分离器中将含有油漆的水渣从气流中分离以达到净化效果,工艺流程见图3。文丘里水幕式净化可有效提高漆雾的捕集效率,同时能够减少设备能耗,但是对于悬浮在喷漆室中漆雾处理效果并不好,漆雾容易黏附在喷漆室的壁板上。
2.1.4水旋式净化法
水旋式处理系统一般由室体、照明系统、送风系统、抽风系统、供水系统、水槽以及防火系统构成。基本原理是将喷漆废气经过水幕预清洗后通往水旋器,利用旋压器内的高速气流的冲击力将水卷起,从而达到捕集漆雾目的,工艺流程如图4所示。
该净化装置存在问题是各相邻水旋器气流之间相互干扰,气流利用率低,使得水旋器雾化效果层次不齐;喷房底部漆泥不容易清除,维修清理困难。
2.1.5小结
不同湿式处理方法虽然在性能、效率、维护等方面存在一些差异,如表3所示,但总体上去除漆雾效率较高。其缺点是漆雾黏附在室壁、管道、水槽中,长时间使用易形成较大漆团堵塞管道,所以还需使用化学絮凝剂处理漆雾废水,因此研制成本低、效果好的漆雾絮凝剂是油漆处理行业的一个重要课题。表4列举了喷漆室中常用的油漆絮凝剂种类。
2.2干式净化法
干式净化法是将喷漆废气进入过滤器,利用滤层阻留喷漆废气中的漆雾和颗粒物,常用玻璃纤维棉、炉渣等作为滤料。理论上过滤法可以去除大部分漆雾,并对其中的挥发性有机物进行少量吸附。该方法无二次污染,不产生废水;缺点是过滤不够*,对设备污染严重,易堵塞。从表5可以看出,相对于湿式净化法,干式净化法在性能上不够稳定,但由于美国等已将湿式净化排放的含涂料废水视为危险废弃物,企业开始放弃湿式净化法,转而使用没有废水排出的干式净化法。
3有机废气的净化处理
经去除漆雾处理后的喷涂废气主要含有挥发性有机物,其处理技术包括传统净化技术、新型净化技术和复合型净化技术。传统净化技术包括吸附法、吸收法、燃烧法和冷凝法等目前应用较广泛,同时新型净化技术膜分离法、光催化法、生物法和等离子体净化法等近年来也得到快速发展和应用;近年来一些研究者将这些净化技术各自优点结合起来,创新出复合型净化处理技术,不断实践和探索组合的处理效果和净化技术。
3.1传统净化处理技术
3.1.1吸附法
吸附法是将有机废气通过装满吸附剂的填充床,吸附有机物达到减小空气污染目的。其关键在于选用吸附剂的性能,高性能吸附剂应具有较大吸附容量、均匀的吸附孔径、易再生等特征。
常见工业吸附剂主要有活性炭、活性碳纤维、焦炭粉粒、分子筛沸石等。活性炭由于其具有密集的微孔结构、极大的内表面积、良好的吸附性能、稳定的化学性质,所以能够适用于喷漆废气中VOCs的吸附净化;但处理湿度大于60%的废气,其吸附效果将明显降低[16];若没有再生装置,更换活性炭增大了运行成本;若采用热空气再生容易引发着火。分子筛比活性炭具有耐高温、不可燃、较强疏水性等特征,可通过热空气再生,对于湿度不高于90%的废气也表现出良好的吸附效果。
目前工业上常用的吸附工艺有固定床、移动床、流化床和转轮式吸附装置。表6比较了不同吸附工艺优缺点。如今欧美、日本等发达国家已普遍应用转轮吸附净化技术,该技术主体是一个装满吸附剂的旋转轮,并根据处理作用的不同划分为吸附、脱附和冷却3个部分。如图5所示,含有VOCs的喷漆废气引入吸附区域,与吸附区中的吸附剂充分接触吸附,待吸附剂转入到脱附区与高温蒸汽或热空气接触,VOCs脱附并随气流流出,吸附剂再生;再生后的吸附剂转移到冷却区降温,为下一次吸附作准备。
近几年,国内对转轮浓缩技术进行了创新,研制出可提高吸附浓缩沸石转轮净化效率和延长沸石转轮使用寿命的新型再生装置;郅立鹏等公开了一种用活性炭材料掺杂的分子筛吸附浓缩转轮制备,分别利用活性炭处理高浓度物质效果好和分子筛处理低浓度物质效果好的特性,解决了转轮技术耐高温性能差的问题。浓缩比是评价转轮性能的重要指标,高浓度废气可选择低浓缩比确保去除率,低浓度废气选择高浓缩比提高净化系统整体能效。浓缩后的VOCs需后续技术净化处理,工业上常用蓄热燃烧或催化燃烧处理,利用热量回收达到节能目的;也可与其他传统处理技术如吸收法、冷凝法或者新型净化技术膜分离法、光催化法联合使用达到净化目的。
3.1.2吸收法
吸收法即利用喷漆废气中的VOCs气体在某些溶剂中的高溶解性,用高沸点、低蒸气压的油溶性溶剂吸收VOCs的一种净化方法。吸收法分为物理吸收和化学吸收,现实工业处理过程一般采用物理吸收,吸收剂是否廉价、易得、无害等是需考虑的关键问题。何璐红等以非离子表面活性剂吐温-20为主表面活性剂,添加助表面活性剂十二烷基苯磺酸钠(SDBS)以及助剂氯化钠,形成复配水溶液吸收剂处理甲苯为主的VOCs废气,甲苯去除率可达到77%。肖潇等通过实验对比二乙基羟胺、聚乙二醇400、硅油、食用油、废机油、0#柴油等吸收剂对甲苯废气的吸收效果,发现在相同实验条件下二乙基羟胺对甲苯的吸收量大。李甲亮等实验研究发现4%的1,4丁二醇(BDO)对甲苯废气具有良好吸收效果,吸收浓度可达43.87mg/L。除物理吸收外,工业生产中也会采用氢氧化钠、次氯酸钠等碱液或酸液作为吸收剂对废气进行化学吸收。表7列举了目前国内外采用的吸收剂类别,并分析了其特性。
通常采用的吸收设备为填料塔或喷淋塔。物理吸收一般采用填料塔设备,如图6所示。因为填料塔相界面大,气液接触时间和气液比均可大范围调节,在分离效率和压降方面都较,同时结构简单,操作弹性大,成本低,对具有腐蚀性的VOCs废气可采用不锈钢或陶瓷材质填料提高耐腐蚀性。相对于填料塔,喷淋吸收塔结构简单、阻力小、投资小。在吸收过程中废气在塔内下进上出,吸收剂由耐腐泵从塔顶打入液体分布装置,均匀向下喷淋和废气逆流接触并发生化学反应[28],洗涤后的废气经喷淋层上方除雾器除去雾滴后从吸收塔顶部排出,如图7所示。
3.1.3燃烧法
燃烧法是将喷漆废气中的有机物燃烧氧化,转换成CO2和H2O无害物质达到废气净化目的。燃烧法可分为直接燃烧法、热力燃烧法、催化燃烧法、蓄热燃烧法等类型。
(1)直接燃烧法高浓度可燃有机废气宜采用直接燃烧法。直接燃烧法需要足够高温度,并保证燃烧空间内拥有足够氧气。若氧气量不足则燃烧不*;若氧气量过多,会使可燃物浓度不在着火界限范围内导致不*燃烧。为防止气体爆炸,一般在锅炉或敞开的燃烧器中燃烧废气,燃烧温度大于1100℃;但当燃烧不*时,会导致一些污染物和烟尘排放到大气中,同时燃烧的热能无法回收,造成燃料能量损失。
(2)热力燃烧法低浓度可燃有机废气可采用热力燃烧法处理。浓度低可燃性物质导致在燃烧过程中不足以释放支持整个燃烧过程所需的能量,因此需加辅助燃料作为助燃气体,通过燃烧助燃气体提高热量,使废气达到反应温度并充分燃烧,如图8所示。热力燃烧法温度一般在500~900℃范围内,低于直接燃烧法温度。
(3)催化燃烧法催化燃烧法被视为处理VOCs的一种高效技术,在催化剂作用下VOCs可在较低温度下(通常为200~400℃)氧化生成无污染的CO2和H2O。催化燃烧法无二次污染,工艺操作简单,安全性高,起燃温度低;但催化剂性能优劣决定VOCs净化效果,因此高性能催化剂选择和研究开发是高效新型催化燃烧法的核心问题,表8表述了常用的催化剂特点。处理高浓度、小风量有机废气可采用催化燃烧法,但喷漆废气风量大、VOCs浓度一般低于300mg/m3,不太适合处理喷漆废气。
(4)蓄热燃烧法当有机废气浓度不高时,常规的热力燃烧和催化燃烧不足以维持自燃,需要额外补充大量热能,因此宜采用蓄热燃烧。目前应用的蓄热燃烧器分两种:蓄热式热力燃烧反应器(RTO)和蓄热式催化燃烧反应器(RCO)。对于RTO装置,一般由蓄热式换热器、热力燃烧室和切换阀门组成,常见的基本形式有二室、三室和多室RTO。二室RTO在进行阀门切换过程中会发生管道残留有机废气同净化后的废气一同排放问题,导致在净化周期内有一半以上时间内无法实现达标排放,净化效率低于80%;三室RTO在二室RTO的基础上增加了冲洗室,解决了废气未处理就排出问题,但阀门过多很难实现同步切换,使未处理废气同净化气体混合,无法实现达标排放;对于多室RTO亦是如此。RCO装置一般由蓄热催化炉和旋转换向阀组成,蓄热催化炉内分隔成多个蓄热催化室,有机废气通过旋转换向阀的进气口进入蓄热催化室中加热,待气体温度达到200~500℃后通过另一个蓄热催化室,在催化剂作用下得到净化并释放热量,净化后的高温气体被蓄热体吸收能量并降低温度,通过旋转换向阀的排气口排出,如图9所示。蓄热燃烧技术优势在于净化效率高、无二次污染,同时实现能量回收,节约燃料,具有良好应用前景。
3.1.4冷凝法
冷凝回收法是将有机废气导入冷凝器中,利用VOCs在不同温度下蒸气分压不同,使VOCs逐步冷凝成液态的回收[33]。冷凝法适用于处理高浓度、小流量有机废气,主要应用于制药、化工等行业;喷涂、印染等行业若采用冷凝法,通常先对较低浓度的喷漆废气压缩后再处理。其工艺是将有机废气通往预冷级单元预处理,一般温度控制在5℃,去除所含水蒸气,避免冷却级蒸发器结霜而影响换热[33];预冷后的有机废气通过冷却级蒸发器降温,温度控制在–30℃左右,把VOCs冷凝成液态。冷凝回收操作简单,效果稳定,其封闭性受外界温度和压力变化影响小,其工作温度低于冷凝后液体闪燃,较安全,但过低的冷凝温度导致能耗高,冷凝设备性能要求和设备投资及运行费用也较高[34]。其中制冷剂选择对制冷效率以及回收效果有着不同影响。表9比较了不同类别制冷剂的优缺点。
3.1.5小结
传统有机废气净化技术应用广泛,已趋于成熟。在实际净化过程中,需针对不同浓度、流量、成分的废气采用适宜技术。传统净化技术的优缺点及其适用范围总结见表10。
3.2新型净化处理技术
3.2.1膜分离法
膜分离技术是根据废气中各组分分子大小不同,利用通过膜传递速率、扩散能力差异实现分离的技术。具有流程简单、能耗小、运行费用和设备占地面积小的优势,在医疗、食品等行业膜分离技术得到了充分重视。膜材料选择是该技术关键问题,材料结构和化学性质对于分离净化效果具有影响,表11比较了不同类型膜材料结构及其优缺点。
近年来,工业生产中尝试将膜分离同传统气体吸收技术结合起来,即膜气体吸收技术,通过气液膜接触器将气液两相分离,再利用驱动压力将气相组分通过分离膜扩散到液相中并吸收;关毅鹏等采用错流式膜接触器及海水基吸收液治理燃煤烟气;姜尚等采用商业的聚酰亚胺中空纤维致密膜为接触器,以淡水和海水作为吸收剂捕集CO2;王跃等采用中空纤维膜接触器,以蛋氨酸合钴溶液为吸收剂去除NO。该技术对VOC分离研究鲜见报道,其原因可能是膜容易堵塞。